Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Materials (Basel) ; 16(7)2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37049037

RESUMO

Tissue engineering products have grown in popularity as a therapeutic approach for chronic wounds and burns. However, some drawbacks include additional steps and a lack of antibacterial capacities, both of which need to be addressed to treat wounds effectively. This study aimed to develop an acellular, ready-to-use ovine tendon collagen type I (OTC-I) bioscaffold with an antibacterial coating for the immediate treatment of skin wounds and to prevent infection post-implantation. Two types of crosslinkers, 0.1% genipin (GNP) and dehydrothermal treatment (DHT), were explored to optimise the material strength and biodegradability compared with a non-crosslinked (OTC) control. Carvone plasma polymerisation (ppCar) was conducted to deposit an antibacterial protective coating. Various parameters were performed to investigate the physicochemical properties, mechanical properties, microstructures, biodegradability, thermal stability, surface wettability, antibacterial activity and biocompatibility of the scaffolds on human skin cells between the different crosslinkers, with and without plasma polymerisation. GNP is a better crosslinker than DHT because it demonstrated better physicochemical properties (27.33 ± 5.69% vs. 43 ± 7.64% shrinkage), mechanical properties (0.15 ± 0.15 MPa vs. 0.07 ± 0.08 MPa), swelling (2453 ± 419.2% vs. 1535 ± 392.9%), biodegradation (0.06 ± 0.06 mg/h vs. 0.15 ± 0.16 mg/h), microstructure and biocompatibility. Similarly, its ppCar counterpart, GNPppCar, presents promising results as a biomaterial with enhanced antibacterial properties. Plasma-polymerised carvone on a crosslinked collagen scaffold could also support human skin cell proliferation and viability while preventing infection. Thus, GNPppCar has potential for the rapid treatment of healing wounds.

3.
Polymers (Basel) ; 15(2)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36679188

RESUMO

Antibacterial coating is necessary to prevent biofilm-forming bacteria from colonising medical tools causing infection and sepsis in patients. The recent coating strategies such as immobilisation of antimicrobial materials and low-pressure plasma polymerisation may require multiple processing steps involving a high-vacuum system and time-consuming process. Some of those have limited efficacy and durability. Here, we report a rapid and one-step atmospheric pressure plasma polymerisation (APPP) of D-limonene to produce nano-thin films with hydrophobic-like properties for antibacterial applications. The influence of plasma polymerisation time on the thickness, surface characteristic, and chemical composition of the plasma-polymerised films was systematically investigated. Results showed that the nano-thin films deposited at 1 min on glass substrate are optically transparent and homogenous, with a thickness of 44.3 ± 4.8 nm, a smooth surface with an average roughness of 0.23 ± 0.02 nm. For its antimicrobial activity, the biofilm assay evaluation revealed a significant 94% decrease in the number of Escherichia coli (E. coli) compared to the control sample. More importantly, the resultant nano-thin films exhibited a potent bactericidal effect that can distort and rupture the membrane of the treated bacteria. These findings provide important insights into the development of bacteria-resistant and biocompatible coatings on the arbitrary substrate in a straightforward and cost-effective route at atmospheric pressure.

4.
Sci Rep ; 13(1): 1675, 2023 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-36717647

RESUMO

Cold plasma (low pressure) technology has been effectively used to boost the germination and growth of various crops in recent decades. The durability of these plasma-treated seeds is essential because of the need to store and distribute the seeds at different locations. However, these ageing effects are often not ascertained and reported because germination and related tests are carried out within a short time after the plasma-treatment. This research aims to fill that knowledge gap by subjecting three different types of seeds (and precursors): Bambara groundnuts (water), chilli (oxygen), and papaya (oxygen) to cold plasma-treatment. Common mechanisms found for these diverse seed types and treatment conditions were the physical and chemical changes induced by the physical etching and the cold plasma on the seeds and subsequent oxidation, which promoted germination and growth. The high glass transition temperature of the lignin-cellulose prevented any physical restructuring of the surfaces while maintaining the chemical changes to continue to promote the seeds germination and growth. These changes were monitored over 60 days of ageing using water contact angle (WCA), water uptake, electrical conductivity, field emission scanning electron microscopy (FE-SEM) and X-ray photoelectron spectroscopy (XPS). The vacuum effect was also investigated to separate its effect from cold plasma (low pressure). This finding offers a framework for determining how long agricultural seeds that have received plasma treatment can be used. Additionally, there is a need to transfer this research from the lab to the field. Once the impact of plasma treatment on seeds has been estimated, it will be simple to do so.


Assuntos
Gases em Plasma , Gases em Plasma/farmacologia , Oxigênio/análise , Agricultura , Sementes , Água/química , Germinação , Temperatura Baixa
7.
Mater Sci Eng C Mater Biol Appl ; 107: 110225, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31761201

RESUMO

Role of sulfur (S) and nitrogen (N) groups in promoting cell adhesion or commonly known as biocompatibility, is well established, but their role in reducing bacterial attachment and growth is less explored or not well-understood. Natural sulfur-based compounds, i.e. sulfide, sulfoxide and sulfinic groups, have shown to inhibit bacterial adhesion and biofilm formation. Hence, we mimicked these surfaces by plasma polymerizing thiophene (ppT) and air-plasma treating this ppT to achieve coatings with S of similar oxidation states as natural compounds (ppT-air). In addition, the effects of these N and S groups from ppT-air were also compared with the biocompatible amine-amide from n-heptylamine plasma polymer. Crystal violet assay and live and dead fluorescence staining of E. coli and S. aureus showed that all the N and S coated surfaces generated, including ppHA, ppT and ppT-air, produced similarly potent, growth reduction of both bacteria by approximately 65% at 72 h compared to untreated glass control. The ability of osteogenic differentiation in Wharton's jelly mesenchymal stem cells (WJ-MSCs) were also used to test the cell biocompatibility of these surfaces. Alkaline phosphatase assay and scanning electron microscopy imaging of these WJ-MSCs growths indicated that ppHA, and ppT-air were cell-friendly surfaces, with ppHA showing the highest osteogenic activity. In summary, the N and S containing surfaces could reduce bacteria growth while promoting mammalian cell growth, thus serve as potential candidate surfaces to be explored further for biomaterial applications.


Assuntos
Materiais Biocompatíveis/química , Nitrogênio/química , Polímeros/química , Enxofre/química , Materiais Biocompatíveis/farmacologia , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Osteogênese/efeitos dos fármacos , Gases em Plasma/química , Polímeros/farmacologia , Propriedades de Superfície , Geleia de Wharton/citologia
8.
Colloids Surf B Biointerfaces ; 173: 447-453, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30326361

RESUMO

As some proteins are known to interact with sulfated and phosphated biomolecules such as specific glycosaminoglycans, this study derives from the hypothesis that sulfonate and phosphonate groups on solid polymer surfaces might cause specific interfacial interactions. Such surfaces were prepared by plasma polymerization of heptylamine (HA) and subsequent grafting of sulfonate or phosphonate groups via Michael-type addition of vinylic compounds. Adsorption of the proteins fibrinogen, albumin (HSA) and lysozyme on these functionalised plasma polymer surfaces was studied by XPS and quartz crystal microbalance with dissipation (QCM-D). It was also studied whether pre-adsorption with HSA would lead to a passivated surface against further adsorption of other proteins. XPS confirmed grafting of vinyl sulfonate and vinyl phosphonate onto the amine surface and showed that the proteins adsorbed to saturation at between 1 and 2 h. QCM-D showed rapid and irreversible adsorption of albumin on all three surfaces, while lysozyme could be desorbed with PBS to substantial extents from the sulfonated and phosphonated surfaces but not from the amine surface. Fibrinogen showed rapid initial adsorption followed by slower additional mass gain over hours. Passivation with albumin led to small and largely reversible subsequent adsorption of lysozyme, whereas with fibrinogen partial displacement yielded a mixed layer, regardless of the surface chemistry. Thus, protein adsorption onto these sulfonated and phosphonated surfaces is complex, and not dominated by electrostatic charge effects.


Assuntos
Aminas/química , Materiais Biocompatíveis/química , Gases em Plasma/química , Compostos de Vinila/química , Adsorção , Fibrinogênio/química , Cinética , Muramidase/química , Polimerização , Técnicas de Microbalança de Cristal de Quartzo , Albumina Sérica Humana/química , Propriedades de Superfície
9.
Micromachines (Basel) ; 8(8)2017 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-30400428

RESUMO

The miniaturization trend leads to the development of a graphene based nanoelectromechanical (NEM) switch to fulfill the high demand in low power device applications. In this article, we highlight the finite element (FEM) simulation of the graphene-based NEM switches of fixed-fixed ends design with beam structures which are perforated and intact. Pull-in and pull-out characteristics are analyzed by using the FEM approach provided by IntelliSuite software, version 8.8.5.1. The FEM results are consistent with the published experimental data. This analysis shows the possibility of achieving a low pull-in voltage that is below 2 V for a ratio below 15:0.03:0.7 value for the graphene beam length, thickness, and air gap thickness, respectively. The introduction of perforation in the graphene beam-based NEM switch further achieved the pull-in voltage as low as 1.5 V for a 250 nm hole length, 100 nm distance between each hole, and 12-number of hole column. Then, a von Mises stress analysis is conducted to investigate the mechanical stability of the intact and perforated graphene-based NEM switch. This analysis shows that a longer and thinner graphene beam reduced the von Mises stress. The introduction of perforation concept further reduced the von Mises stress at the graphene beam end and the beam center by approximately ~20⁻35% and ~10⁻20%, respectively. These theoretical results, performed by FEM simulation, are expected to expedite improvements in the working parameter and dimension for low voltage and better mechanical stability operation of graphene-based NEM switch device fabrication.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...